Scientific Investigation Planning Form

Investigators: _____

Planning Step #1: Brainstorming

Place Post It Notes in the squares below. Only one idea on each note.

General Topic: _____

Things the investigator could change or vary on purpose:

Things the investigator could measure or observe (different from above):

Planning Step #2: Choosing Variables

Place Post It Notes in the squares below.

Part to change (independent variable):

Part to measure (dependent variable).

Part or parts to keep the same where possible (controlled variables or constants):

Step 1: Problem/Question

What is the question this experiment will try to answer? Include the independent and dependent variables in the question. For Example: *What fertilizer (independent variable) will cause bean plants to grow to the tallest height (dependent variable).*

Independent Variable

Dependent Variable

Write your question here:

Step 2: Information (Background Research)

What background information would be helpful to know?

Independent Variable	If the independ e	nt variable changes							
Dependent Variable	then this is wh	at will happen to the dependent variable .							
Write your hypothesis below, using the boxes above as a guide.									
If the	is								
Independent Var	iable	describe how you will change it							
then the	will _	,							
Dependent Vari	able	describe the effect of the change							
because		,							
as measured by (with)	instrumen	t. tool, probe, etc.							

Step 4: Experiment

Write out your experimental plan.

Materials List:

Safety Precautions:

Preparation:

Step-by-step instructions (like a recipe):

Step 5: Results – Data Table

Place Post It Notes in the squares below.

Set up a sample data table like the one below specific to your variables and number of trials.

When the independent variable changed:	This was the result (dependent variable)											
Independent Variable					Dependent Variable							

Step 5: Results – Graph Title: The effect of _____

_ on

(Dependent variable)

(Independent Variable)

Create a graph like this in your logbook or on a separate sheet of paper, as appropriate.

Step 5: Results – Statistics

Statistical tests will be discussed and modeled in class.

Step 6: Discussion

- 1. Explanation of findings in paragraph form. MUST include numerical data to back up your claims.
- 2. Summarize trends observed in the data.
- 3. Discuss the statistical tests that were conducted, why you used the test you did and which comparisons did or did not show statistically significant findings.
- 4. How did your findings compare with your predictions, other research, other scientific facts you know, or other experimentation?
- 5. Discuss problems and/or possible sources of error that might have occurred.
- 6. How could the experiment be improved, or changed for further study? (See "New Design" below)
- 7. New Design: The next thing the investigator might want to know is:

The next variable to measure...

Step 7: Conclusion – Finding Patterns

Write out your conclusion, answering these questions. Do not introduce any NEW information in your conclusion.

- 1. What was the purpose of the experiment?
- 2. What were the major findings: Include data (numbers) examples.
- 3. Was the hypothesis <u>supported</u> by the data? (Do not use "proved".)
- 4. What are the practical applications of your experiment?